Молекулы переносчиков нейромедиаторов
Сходство первичных аминокислотных последовательностей транспортных белков, производящих закачку в нервное окончание норэпинефрина (NET), серотонина (SERT), дофамина (DAT), ГАМК (GAT) и глицина (GLYT), позволяет заключить, что все они происходят от одного суперсемейства генов. Переносчики моноаминов представляют особый интерес, поскольку именно они являются мишенью для многих наркотических веществ, включая кокаин и амфетамин, а также некоторых антидепрессантов. Каждый член суперсемейства представлен несколькими изотипами. Белки имеют молекулярную массу от 80 до 100 кД и, как следует из гидропати ческого анализа, состоят из 12 трансмембранных сегментов. По первичной последовательности молекулу переносчика холина также можно отнести к этому суперсемейству.
В настоящее время изолировано пять белков, осуществляющих закачку глутамата. Они структурно отличаются от суперсемейства переносчиков моноаминов, ГАМК и глицина. Размер этих белков сравнительно невелик, от 500 до 600 аминокислот, при массе около 65 кД. Гидропатические данные свидетельствуют о наличии 10 трансмембранных сегментов.
Семейства белков, осуществляющих закачку моноаминов, глицина, ГАМК, глутамата и ацетилхолина в синаптические пузырьки, функционально отличаются тем, что зависят не от натриевых, а от протонных градиентов. Везикулярные переносчики моноаминов (VMAT1 и VMAT2) были клонированы раньше других, за ними последовал везикулярный переносчик ацетилхолина (VAChT). Каждая из этих молекул включает в себя от 520 до 530 аминокислот и, судя по гидропатическим данным, состоит из 12 трансмембранных сегментов. Структура VMAT1 и VMAT2 совпадает на 65%, a VAChT идентичен им на 40%. Молекулы переносчиков ГАМК и глицина также были успешно клонированы. Они структурно отличаются от переносчиков моноаминов и ACh и состоят всего из 10 трансмембранных сегментов.
Вывод
Как первичные, так и вторичные механизмы активного транспорта вносят постоянный вклад в поддержание клеточного гомеостаза, а также поставляют необходимые элементы для синаптической передачи. Тем не менее, этими простыми на первый взгляд процессами их роль в жизнедеятельности нервной системы не ограничивается. Переносчики вносят существенный вклад в работу сигнальных систем клетки. Так, например, в небольших ответвлениях нервных окончаний во время распространения потенциала действия, активация натрий-калиевых АТФаз вследствие накопления внутриклеточного натрия может вызвать блок проводимости. Другой пример связан с активацией рецепторов ГАМКА, которые образуют хлорные каналы в мебране клетки. В тех клетках, из которых переносчики выводят хлор наружу, внутриклеточные концентрации этого иона низки, и при открывании хлорных каналов ГАМКА-рецепторов хлор входит в клетку, вызывая гиперполяризацню мембранного потенциала. Напротив, в тех клетках, где преобладают переносчики ионов хлора из внеклеточного пространства в цитоплазму, внутриклеточный уровень хлора сравнительно высок, и открывание ГАМКА-каналов приводит к деполяризации за счет выхода хлора из клетки. Таким образом, характер действия медиатора непосредственно определяется наличием тех или иных переносчиков в клетке.
Еще более важную роль играют переносчики нейромедиаторов. Быстрое удаление молекул медиатора из синаптической щели может предотвратить избыточную активацию, а также инактивацию рецепторов. Своевременная закачка медиатора в синаптические пузырьки поддерживает нервное окончание в состоянии постоянной готовности. Следовательно, переносчики выполняют важнейшую функцию регуляции динамических свойств синапсов и нервной системы в целом.
Вообще говоря, следует рассматривать ионные каналы как системы, проводящие электрические сигналы, а переносчики - как системы обеспечения базовых условий, при которых такое проведение становится возможным. Следует отметить, что между этими двумя системами зачастую происходят и более сложные взаимодействия, влияющие на работу нервной системы.