Явление флуоресценции
При взаимодействии света с веществом может происходить преломление световых лучей и их рассеяние, либо поглощение фотонов молекулами, или то и другое вместе. Если произошло поглощение кванта света, то через 10-9с может происходить испускание части поглощённой энергии в виде кванта света с большей длиной волны: такое излучение называется люминесценцией. Встречающиеся в природе явления люминесценции весьма разнообразны. [5]
Различают два вида люминесценции, отличающихся по времени жизни и энергии излучаемых фотонов. Исходя из наиболее характерного качественного признака люминесценции – степени её длительности – различают флуоресценцию – свечение мгновенное, появляющееся лишь в момент возбуждения светящегося объекта, и фосфоресценцию – свечение более длительное, продолжающееся иногда весьма долго по окончании возбуждения. Изучение люминесценции позволяет судить о строении поглощающих свет молекул и участков молекул (хромофоров), а также производить их качественный и количественный анализ, выяснять физико-химические свойства среды, окружающей молекулы или их хромофорные группы. [6]
Различают собственную (первичную) люминесценцию, наблюдаемую без окрашивания, и вторичную (наведённую), которая возникает после обработки химическим агентом или красителем. [9]
Согласно закону Стокса, спектр флуоресценции лежит в более длинноволновой области по сравнению со спектром поглощения того же соединения. Это означает, что средняя энергия квантов флуоресценции меньше средней энергии поглощённых квантов.
Правило Каши относится к форме спектра флуоресценции при возбуждении объекта светом разных длин волн. Испускание квантов флуоресценции всегда происходит с нижнего возбуждённого уровня молекул, независимо от того, на каком уровне оказался электрон в результате поглощения. Т.е. какой бы длиной волны не была возбуждена молекула, излучение будет происходить из одного и того же состояния молекулы. [7]
Интенсивность флуоресценции (Iф) зависит от концентрации флуоресцирующих молекул (Z), интенсивности возбуждающего света (Iв), значение молярного коэффициента поглощения (Еλ) и величины квантового выхода флуоресценции
(Кλ): Iф=2,3*Iв* Еλ* Кλ* Z*L,
где L – длина оптического пути в объекте. Измеряемая интенсивность флуоресценции даёт информацию о величине Кλ*Z, т.е. о количестве флуоресцирующих молекул и их способности флуоресцировать (квантовый выход). Это уравнение справедливо при поглощении объектом менее 5% возбуждающего света, что обычно имеет место в физиологических опытах. При поглощении более 5% света наблюдается нелинейная зависимость. [8]
Для характеристики флуоресценции помимо её интенсивности и квантового выхода, можно использовать значения смещения максимума флуоресценции по спектру, время жизни флуоресценции молекулы и степень поляризации флуоресценции. Перечисленные параметры позволяют получить информацию о характере взаимодействия флуоресцентных молекул между собой и с окружающей их средой. [6]