Натриевые и калиевые токи
Потенциал покоя зависит главным образом от разности концентраций калия (как было предложено Бернштейном в 1902 году), и, в меньшей степени, от концентраций натрия и хлора. Одновременно с созданием Бернштейном теории потенциала покоя, Овертон сделал важное открытие: он показал, что для генерации нервом потенциала действия необходим натрий, и сделал робкое предположение о том, что основой потенциала действия является вход ионов натрия в клетку. Развитие эта гипотеза получила благодаря опытам на аксоне кальмара.
В 1939 году Ходжкин и Хаксли показали, что на пике потенциала действия происходит кратковременная смена знака («овершут») потенциала на внутренней стороне мембраны в область положительных значений. Это наблюдение подтвердило участие натрия в потенциале действия, поскольку вход натрия в клетку происходит и при положительных значениях мембранного потенциала вплоть до натриевого равновесного потенциала ENa. Спустя десятилетие Ходжкин и Катц добились уменьшения явления овершута путем снижения внеклеточной концентрации натрия, а следовательно, и ЕNa. Они пришли к выводу, что потенциал действия есть результат значительного, хотя и кратковременного, увеличения натриевой проводимости мембраны. Сегодня известно, что это увеличение происходит за счет открытия огромного числа потенциалзависимых натриевых каналов.
Чем объясняется фаза спада потенциала действия? Можно предположить, что спад происходит просто в результате закрытия натриевых каналов. Это, действительно, один из факторов. Однако, если бы это был единственный механизм, то возврат мембранного потенциала к уровню потенциала покоя в большинстве клеток происходил бы гораздо медленнее, чем в действительности. Причина этого в том, что общая проводимость мембраны в покое достаточно мала, и выход накопленных в результате потенциала действия положительных ионов из клетки занял бы несколько миллисекунд, а то и десятки миллисекунд. В действительности, возврат к уровню потенциала покоя происходит гораздо быстрее благодаря значительному увеличению другой мембранной проводимости, а именно, за счет открытия калиевых каналов. С той же быстротой, с которой мембранный потенциал деполяризовался в направлении ENa, он гиперполяризуется на фазе спада потенциала действия в направлении ЕK. Увеличение калиевой проводимости может продолжаться до нескольких миллисекунд, что приводит во многих клетках не только к реполяризации, но и к гиперполяризации мембраны до значений более отрицательных, чем потенциал покоя.
Рост потенциала