Центральная идея книги И. Пригожина, И. Стенгерса Время, хаос, квант
Хаос не только позволяет разрешить парадокс времени, но делает нечто большее, а именно привносит вероятность в классическую динамику. И в этом контексте вероятность выступает не как порождение незнания, а как неизбежное выражение хаоса.
Таким образом, определяемый хаос приводит к несводимому вероятностному описанию.
Далее обращается следующее утверждение: все системы, допускающие несводимое вероятностное описание, по определению будут считаться хаотическими. Таким образом, системы, о которых идет речь, допускают описание не в терминах отдельных траекторий, а только в терминах ансамблей траекторий. С операционной точки зрения, область хаоса расширяется и включает обширные семейства классических или квантовых систем, в действительности – всех систем, которые соответствуют фундаментальному описанию природы, как его понимают сегодня. Широкое обобщение понятия хаоса позволяет констатировать необходимость новой формулировки законов физики.
Первая формулировка основана на исследовании траекторий и волновых функций, вторая на теории ансамблей Гиббса и Эйнштейна.
Но с динамической точки зрения вторая формулировка не вносит нового элемента, поскольку, будучи примененной к отдельным траекториям или волновым функциям, сводится к первой формулировке.
Третья формулировка, к которой приходят авторы, имеет особый статус, так как она применима только к ансамблям и справедлива только для хаотических систем. Она приводит к результатам, которые не могли быть получены ни на основе ньютоновской механики, ни на основе квантовой механики. Именно эта формулировка образует базис для синтеза, объединяющего свойства микромира и макромира, так как она вводит необратимость в фундаментальное описание природы.
Элементы, включающие в себя хаос, стрелу времени и решение квантового парадокса, приводят к более целостной концепции природы, в которой становление и «события» входят на всех уровнях описания.
В традиционном понимании законы природы был законами, описывающими замкнутую детерминистическую Вселенную, прошлое и будущее которой считались эквивалентными. Но этот подход привел к отчуждению фундаментальной физики, мыслившей в терминах традиционных законов природы, от всех остальных наук, исходивших в своих описаниях из допущения о существовании стрелы времени. В настоящее время становится понятно, что детерминистические симметричные во времени законы соответствуют только весьма частным случаям. Они верны только для устойчивых классических и квантовых систем. Несводимые вероятностные законы приводят к картине «открытого мира», в котором в каждый момент времени в игру вступают все новые возможности.
Однако речь шла о несводимом вероятностном описании. В книге авторы распространяют полученные ими результаты на ситуации, которые представляют интерес в классической и квантовой теории. Однако основной трудностью является исключение теории Пуанкаре. Устранение этой теории начинается с важного наблюдения. «И в классической, и в квантовой физике время входит в описание двумя различными способами: как параметр в уравнениях движения, или при введении «хронологического упорядочения».
Характерная особенность метода, предложенного авторами, состоит в том, что оба аспекта времени играют существенную роль. Для устранения расходимостей Пуанкаре необходимо хронологическое упорядочение.
Расходимости, по мере того, как они устранены, проявляются в нарушении симметрии во времени. Для устойчивых динамических систем уравнения движения, а также их решения симметричны во времени. Для неустойчивых динамических систем уравнения остаются симметричными, но возникают два семейства решений с нарушенной симметрией во времени. Это нарушение симметрии играет важную роль в решении парадокса времени: природа менее симметрична, чем можно было бы ожидать, исходя из уравнений классической и квантовой физики.
В качестве примера авторы рассматривают распад нестабильной частицы. Одно семейство, получаемых решений, предсказывает распад в будущем, другое – в прошлом.